

Cutting and analysis of spread from the cut of painted samples

Standard for evaluation of degradation

- EN ISO 4628 Paints and varnishes Evaluation of degradation of coatings Designation of quantity and size of defects, and of intensity of uniform changes in appearance
 - Part 3 Assessment of degree of rusting
 - Part 5 Assessment of degree of flaking
 - Part 8 Assessment of degree of delamination and corrosion around a scribe
 - Part 10 Assessment of degree of filiform corrosion

Part 3. Degree of rusting and rusted area

Degree of rusting	Rusted area %
RiØ	٥
Ri 1	0,05
Ri 2	0,5
Ri 3	1
Ri 4	8
Ri 5	40 to 50

Ri 2

Ri 4

Part 5. Designating the quantity of flaking

Rating	Flaked area	
	%	
0	0	
1	0.1	
2	0,3	
3	1	
4	3	
5	15	

Flaking without preferential direction

Quantity (density) 4

Quantity (density) 5

Flaking with preferential direction

Quantity (density) 4

Quantity (density) 5

Part 10. Filiform corrosion

Evaluation of filiform corrosion

- Two parameters are determined based on the spread from both sides of the scratch
 - The length of the longest filament (L)
 - The most frequent filament length (M)
- For determination of M, two methods are proposed
 - Method 1 (for regular filiform corrosion, a)
 - Method 2 (for irregular filiform corrosion, b)

Evaluation of filiform corrosion Figure 1a&b

Key

- L length of longest filament
- M most frequent filament length
- r right
- l left
- 1, 2, ... number of zone
- x zones on left-hand side
- y zones on right-hand side
- z overall length of assessed area

Expression of results for filiform corrosion

• The numerical ratings for the length of the longest filament *L* and the most frequent filament length *M* should be expressed as in the following example:

filiform corrosion, *L5/M3*

• This means the length of the longest filament is 5 mm and the most frequent filament length is 3 mm.

Part 8. Delamination and corrosion around a scribe

- The following phenomena can occur around the scribe:
 - Corrosion, area of visible corrosion products
 - **Delamination**, loss of adhesion of a coating
- Both the area of delamination and the area of corrosion are determined either by
 - Measurement and calculation (preferred) or;
 - (Pictorial standards)

Assessment of delimation

- Carefully remove any loose coating using a knife and lifting the coating away from the substrate
- Measure, in mm, the total width of the zone of delamination at a minimum of six points uniformly distributed along the scribe.
 Ignore delamination beyond the beginning and end of the original scribe
- Determine the arithmetic mean and record this as the mean overall width of the zone of delamination, d_1

Assessment of corrosion

- Carefully remove any loose coating using a knife and lifting the coating away from the substrate
- Measure, in mm, the total width of the zone of corrosion at a minimum of six points uniformly distributed along the scribe. Ignore corrosion beyond the beginning and end of the original scribe
- Determine the arithmetic mean and record this as the mean overall width of the zone of corrosion, w_c

Determination of arithmetic mean

Calculation and expression of results

- Degree of delamination in mm, d $d = (d_1 - w) / 2$
- Degree of corrosion in mm, c $c = (w_c - w) / 2$
- *w*, width of the original scribe in mm
- d_1 , mean overall width of the zone of delamination in mm
- w_c , mean overall width of the zone of corrosion in mm

Tools for making a scribe

Manual tool (sharp tip)

Manual tool (Volvo scribing tool)

Automatic equipments

Example of a scribe produced in a correct way

Example of a scribe produced in an incorrect way

- Damage is present outside the scribe produced by a singly stroke before testing
- Scribe must be made without causing mechanical damage in the surrounding coating
- This is avoided by repetitive scribing applying less force

General recommendation

• Scribe is made through the coating and through any anodic layers to the steel substrate by multiple strokes with a perpendicular edge type scribing tool